Число пи показывает. Вычисление N-го знака числа Пи без вычисления предыдущих. История числа "пи"

Число Пи - одно из самых популярных математических понятий. О нем пишут картины, снимают фильмы, его играют на музыкальных инструментах, ему посвящают стихи и праздники, его ищут и находят в священных текстах.

Кто открыл π?

Кто и когда впервые открыл число π, до сих пор остается загадкой. Известно, что строители древнего Вавилона уже вовсю пользовались им при проектировании. На клинописных табличках, которым тысячи лет, сохранились даже задачи, которые предлагали решить с помощью π. Правда, тогда считалось, что π равно трем. Об этом свидетельствует табличка, найденная в городе Сузы, в двухстах километрах от Вавилона, где число π указывалось как 3 1/8 .

В процессе вычислений π вавилонцы обнаружили, что радиус окружности в качестве хорды входит в нее шесть раз, и поделили круг на 360 градусов. А заодно сделали то же самое с орбитой солнца. Таким образом, они решили считать, что в году 360 дней.

В Древнем Египте π было равно 3,16.
В древней Индии – 3,088.
В Италии на рубеже эпох считали, что π равно 3,125.

В Античности самое раннее упоминание π относится к знаменитой задаче о квадратуре круга, то есть о невозможности при помощи циркуля и линейки построить квадрат, площадь которого равна площади определенной окружности. Архимед приравнивал π к дроби 22/7 .

Ближе всего к точному значению π подошли в Китае. Его вычислил в V веке н. э. знаменитый китайский астроном Цзу Чунь Чжи. Вычислялось π довольно просто. Надо было дважды написать нечетные числа: 11 33 55, а потом, разделив их пополам, поместить первое в знаменатель дроби, а второе – в числитель: 355/113 . Результат совпадает с современными вычислениями π вплоть до седьмого знака.

Почему π – π?

Сейчас даже школьники знают, что число π - математическая константа, равная отношению длины окружности к длине её диаметра и равняется π 3,1415926535 … и далее после запятой – до бесконечности.

Свое обозначение π число обрело сложным путем: сначала этой греческой буквой в 1647 году математик Оутрейд обозвал длину окружности. Он взял первую букву греческого слова περιφέρεια - «переферия». В 1706 году английский преподаватель Уильям Джонс в работе «Обозрение достижений математики» уже называл буквой π отношение длины окружности к ее диаметру. А закрепил название математик XVIII века Леонард Эйлер, перед авторитетом которого остальные склонили головы. Так π стало π.

Уникальность числа

Пи - поистине уникальное число.

1. Ученые считают, что количество знаков в числе π бесконечно. Их последовательность не повторяется. Более того, найти повторения не удастся никому и никогда. Так как число бесконечно, оно может заключать в себе абсолютно все, даже симфонию Рахманинова, Ветхий Завет, ваш номер телефона и год, в котором наступит Апокалипсис.

2. π связано с теорией хаоса. К такому выводу пришли ученые после создания вычислительной программы Бэйли, которая показала, что последовательность чисел в π абсолютно случайна, что соответствует теории.

3. Вычислить число до конца практически невозможно – это заняло бы слишком много времени.

4. π – иррациональное число, то есть его значение нельзя выразить дробью.

5. π – трансцедентное число. Его нельзя получить, произведя какие-либо алгебраические действия над целыми числами.

6. Тридцать девять знаков после запятой в числе π достаточно для того, что вычислить длину окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью в радиус атома водорода.

7. Число π связано с понятием «золотого сечения». В процессе измерений Великой пирамиды в Гизе археологи выяснили, что ее высота относится к длине ее основания, так же как радиус окружности - к ее длине.

Рекорды, связанные с π

В 2010 году сотрудник компании «Yahoo» математик Николас Чже смог вычислить в числе π два квадрильона знаков после запятой (2x10). На это ушло 23 дня, и математику понадобилось множество помощников, которые работали на тысячах компьютеров, объединенных по технологии рассеянных вычислений. Метод позволил произвести расчеты с такой феноменальной скоростью. Чтобы вычислить то же самое на одном компьютере, потребовалось бы больше 500 лет.

Для того, чтобы просто записать все это на бумаге, потребуется бумажная лента больше двух миллиардов километров длиной. Если развернуть такую запись, ее конец выйдет за пределы Солнечной системы.

Китаец Лю Чао установил рекорд по запоминанию последовательности цифр числа π. В течение 24 часов 4 минут Лю Чао назвал 67 890 знаков после запятой, не допустив ни одной ошибки.

У π много поклонников. Его воспроизводят на музыкальных инструментах, и оказывается, что «звучит» оно превосходно. Его запоминают и придумывают для этого различные приемы. Его ради забавы скачивают себе на компьютер и хвастаются друг перед другом, кто больше скачал. Ему ставят памятники. Например, такой памятник есть в Сиэтле. Он находится на ступенях перед зданием Музея искусств.

π используют в украшениях и в интерьере. Ему посвящают стихи, его ищут в святых книгах и на раскопках. Есть даже «Клуб π».
В лучших традициях π, числу посвящен не один, а целых два дня в году! В первый раз День π празднуют 14 марта. Поздравлять друг друга надо ровно в 1час, 59 минут, 26 секунд. Таким образом, дата и время соответствуют первым знакам числа- 3,1415926.

Во второй раз праздник π отмечают 22 июля. Этот день связывают с так называемым «приближенным π», который Архимед записывал дробью.
Обычно в этот день π студенты, школьники и ученые устраивают забавные флэш-мобы и акции. Математики, забавляясь, с помощью π вычисляют законы падающего бутерброда и дарят друг другу шуточные награды.
И между прочим, π в самом деле можно найти в святых книгах. Например, в Библии. И там число π равно… трем.

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια — окружность, периферия и περιµετρoς — периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} — arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 — 4(\frac{1}{3} + \frac{1}{5} — \frac{1}{7} + \frac{1}{9} — \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 — \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} — \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли — Боруэйна — Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} — \frac{2}{8k+4} — \frac{1}{8k+5} — \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n — 1} — \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} — 1} — \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

14 мар 2012

14 марта математики отмечают один из самых необычных праздников - Международный день числа «Пи». Эта дата выбрана неслучайно: числовое выражение π (Пи) - 3,14 (3 месяц (март) 14 число).

Впервые с этим необычным числом школьники сталкиваются уже в младших классах при изучении круга и окружности. Число π - математическая константа, которая выражает отношение длины окружности к длине ее диаметра. Т.е если взять окружность с диаметром равным единице, то длина окружности и будет равна числу «Пи». Число π имеет бесконечную математическую продолжительность, но в повседневных вычислениях используют упрощенное написание числа, оставляя только два знака после запятой, - 3,14.

В 1987 году этот день отмечался впервые. Физик Ларри Шоу из Сан-Франциско заметил, что в американской системе записи дат (месяц / число) дата 14 марта - 3/14 совпадает с числом π (π = 3,1415926…). Обычно празднования начинаются в 1:59:26 дня (π = 3,1415926 …).

История числа «Пи»

Предполагается, что история числа π начинается в Древнем Египте. Египетские математики определяли площадь круга диаметром Dкак (D-D/9) 2 . Из данной записи видно, что в то время число π приравнивали к дроби (16/9) 2 , или 256/81, т.е. π 3,160...

В VI в. до н.э. в Индии в религиозной книге джайнизма есть записи, свидетельствующие о том, что число π в то время принимали равным квадратному корню из 10, что даёт дробь 3,162...
В III в. до н.э.Архимед в своей небольшой работе "Измерение круга" обосновал три положения:

  1. Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;
  2. Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14;
  3. Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71.

Последнее положение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10 / 71и 3*1/7, а это означает, что число «пи» равно 3,1419... Истинное значение этого отношения 3,1415922653...
В V в. до н.э. китайский математик Цзу Чунчжи нашёл более точное значение этого числа: 3,1415927...
Впервой половине XV в. астроном и математикал-Каши вычислил π с 16 десятичными знаками.

Спустя полтора столетия в Европе Ф.Виетнашёл число π только с 9 правильными десятичными знаками: он сделал 16 удвоений числа сторон многоугольников. Ф.Виетпервым заметил, что π можно отыскать, используя пределы некоторых рядов. Это открытие имело большое значение, оно позволило вычислить π с какой угодно точностью.

В 1706 г английский математик У.Джонсон ввёл обозначение отношения длины окружности к диаметру и обозначил его современным символом π первой буквой греческого слова periferia-окружность.

На протяжении длительного периода времени учёные всего мира пытались разгадать тайну этого загадочного числа.

В чем же сложность вычисления значения π ?

Число π является иррациональным: его невозможно выразить в виде дроби p/q, где p и q целые числа, данное число не может быть корнем алгебраического уравнения. Нельзя указать алгебраическое или дифференциальное уравнение, корнем которого будет π, поэтому данное число называется трансцендентным и вычисляется путём рассмотрения какого-либо процесса и уточняется за счет увеличения шагов рассматриваемого процесса. Множественные попытки просчитать максимальное количество знаков числа π привели к тому, что сегодня, благодаря современной вычислительной технике, можно рассчитать последовательность с точностью в 10 триллионов цифр после запятой.

Цифры десятичного представления числа π достаточно случайны. В десятичном разложении числа можно найти любую последовательность цифр. Предполагают, что в данном числе в зашифрованном виде есть все написанные и ненаписанные книги, любая информация, которую только можно представить, находится в числе π.

Можете сами попробовать разгадать тайну этого числа самостоятельно. Записать число «Пи» полностью, конечно не получится. Но самым любопытным предлагаю рассмотреть первые 1000 знаковчисла π = 3,
1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989

Запоминаем число «Пи»

В настоящее время с помощью вычислительной техники вычислено в десять триллионов знаков числа «Пи». Максимальное число цифр, которое смог запомнить человек составляет сто тысяч.

Чтобы запомнить максимальное количество знаков числа «Пи», используют различные стихотворные «запоминалки», в которых слова с определённым количеством букв располагаются в такой же последовательности, как цифры в числе «Пи»: 3,1415926535897932384626433832795…. Для восстановления числа необходимо подсчитать число символов в каждом из слов и записать по порядку.

Вот и знаю я число, именуемое "Пи". Молодец! (7 цифр)

Вот и Миша и Анюта прибежали
Пи узнать число они желали. (11 цифр)

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду. (21 цифра)

Раз у Коли и Арины
Распороли мы перины.
Белый пух летал, кружился,
Куражился, замирал,
Ублажился,
Нам же дал
Головную боль старух.
Ух, опасен пуха дух! (25 знаков)

Можно использовать рифмованные строки, которые помогают запомнить нужное число.

Чтобы нам не ошибиться,
Нужно правильно прочесть:
Девяносто два и шесть

Если очень постараться,
Можно сразу пи прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.

Три, четырнадцать, пятнадцать,
Девять, два, шесть, пять, три, пять.
Чтоб наукой заниматься,
Это каждый должен знать.

Можно просто постараться
И почаще повторять:
«Три, четырнадцать, пятнадцать,
Девять, двадцать шесть и пять».

Остались вопросы? Хотите знать больше о числе "Пи"?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

1. Актуальность работы.

В бесконечном множестве чисел, так же как среди звезд Вселенной, выделяются отдельные числа и целые их «созвездия» удивительной красоты, числа с необыкновенными свойствами и своеобразной, только им присущей гармонией. Надо только уметь увидеть эти числа, заметить их свойства. Всмотритесь в натуральный ряд чисел - и вы найдете в нем много удивительного и диковинного, забавного и серьезного, неожиданного и курьезного. Видит тот, кто смотрит. Ведь люди и в летнюю звездную ночь не заметят… сияние. Полярной звезды, если не направят свой взор в безоблачную высь.

Переходя из класса в класс я познакомился с натуральными, дробными, десятичными, отрицательными, рациональными. В этом году я изучил иррациональные. Среди иррациональных чисел есть особое число, точными вычислениями которого занимаются ученые уже много веков. Оно встретилось мне ещё в 6 классе при изучении темы «Длина окружности и площадь круга». Было акцентировано внимание на то, что довольно часто будем встречаться с ним на уроках в старших классах. Интересны были практические задания на нахождение числового значения числа π. Число π является одним из интереснейших чисел, встречающихся при изучении математики. Оно встречается в разных школьных дисциплинах. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению.

Услышав об этом числе много интересного, я сам решил путём изучения дополнительной литературы и поиска в Интернете узнать как можно больше информации о нём и ответить на проблемные вопросы:

Как давно люди знали о числе пи?

Для чего необходимо его изучение?

Какие интересные факты с ним связаны

Верно ли, что значение пи равно приближённо 3,14

Поэтому, перед собой я поставил цель: исследовать историю числа π и значимость числа π на современном этапе развития математики.

Задачи:

Изучить литературу с целью получения информации об истории числа π;

Установить некоторые факты из «современной биографии» числа π;

Практическое вычисление приближенного значения отношения длины окружности к диаметру.

Объект исследования:

Объект исследования: Число ПИ.

Предмет исследования: Интересные факты, связанные с числом ПИ.

2. Основная часть. Удивительное число π.

Никакое другое число не является таким загадочным, как "Пи" с его знаменитым никогда не кончающимся числовым рядом. Во многих областях математики и физики ученые используют это число и его законы.

Мало какому числу из всех чисел, которые используются в математике, в естественных науках, в инженерном деле и в повседневной жизни, уделяется столько внимания, сколько уделяется числу пи. В одной книге говорится: «Число пи захватывает умы гениев науки и математиков-любителей во всем мире» («Fractals for the Classroom»).

Его можно встретить в теории вероятностей, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.

Некоторые даже считают его одним из пяти важнейших чисел в математике. Но, как отмечается в книге «Fractals for the Classroom», при всей важности числа пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков пи».

3. Понятие числа пи

Число π — математическая константа, выражающая отношение длины окружности к длине ее диаметра . Число π (произносится «пи» ) —математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».

В цифровом выражении π начинается как 3,141592 и имеет бесконечную математическую продолжительность.

4. История числа "пи"

Как считают специалисты, это число было открыто вавилонскими магами . Оно использовалось при строительстве знаменитой Вавилонской башни. Однако недостаточно точное исчисление значения Пи привело к краху всего проекта. Возможно, что эта математическая константа лежала в основе строительства легендарного Храма царя Соломона.

История числа пи, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. π = 3,160...

В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным, что даёт дробь 3,162... Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.

Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:

    Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;

    Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ;

    Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .

По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, что π = 3,1419... Истинное значение этого отношения 3,1415922653... В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа: 3,1415927...

В первой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил пи с 16 десятичными знаками. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1" . Эти таблицы сыграли важную роль в астрономии.

Спустя полтора столетия в Европе Ф.Виет нашёл число пи только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что пи можно отыскать, используя пределы некоторых рядов. Это открытие имело большое

значение, так как позволило вычислить пи с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.

День рождения числа “” .

Неофициальный праздник «День числа ПИ» отмечается 14 марта, которое в американском формате (день/ число) записывается как 3/14, что соответствует приближенному значению числа ПИ.

Существует и альтернативный вариант праздника - 22 июля. Он называется "День приближенного числа Пи". Дело в том, что представление этой даты в виде дроби (22/7) также дает в виде результата число Пи. Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, дата и время совпадают с первыми разрядами числа π.

Интересные факты, связанные с числом “”

Ученые Токийского университета под руководством профессора Ясумаса Канада сумели поставить мировой рекорд в вычислениях числа Пи до 12411-триллионного знака. Для этого группе программистов и математиков понадобилась специальная программа, суперкомпьютер и 400 часов машинного времени. (Книга рекордов Гиннеса).

Германский король Фридрих Второй был настолько очарован эти числом, что посвятил ему …целый дворец Кастель дель Монте, в пропорциях которого можно вычислить ПИ. Сейчас волшебный дворец находится под охраной ЮНЕСКО.

Как запомнить первые цифры числа “ ”.

Три первые цифры числа  = 3,14… запомнить совсем несложно. А для запоминания большего числа знаков существуют забавные поговорки и стихи. Например, такие:

Нужно только постараться

И запомнить всё как есть:

Девяносто два и шесть.

С.Бобров. ”Волшебный двурог”

Тот, кто выучит это четверостишие, всегда сможет назвать 8 знаков числа :

В следующих фразах знаки числа  можно определить по количеству букв в каждом слове:

Что я знаю о кругах?” (3,1416);

Вот и знаю я число, именуемое Пи. - Молодец!”

(3,1415927);

Учи и знай в числе известном за цифрой цифру, как удачу примечать”

(3,14159265359)

5. Обозначение числа пи

Первым ввёл обозначение отношения длины окружности к диаметру современным символом пи английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало общеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г.

В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число пи иррационально. Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Поиски точного выражения пи продолжались и после работ Ф.Виета . В начале XVII в. голландский математик из КёльнаЛудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа .

6. Как запомнить число "Пи" с точностью до одиннадцати знаков

Число "Пи" - это отношение длины окружности к ее диаметру, оно выражается бесконечной десятичной дробью. В обиходе нам достаточно знать три знака (3,14). Однако в некоторых расчетах нужна большая точность.

У наших предков не было компьютеров, калькуляторов и справочников, но со времен Петра I они занимались геометрическими расчетами в астрономии, в машиностроении, в корабельном деле. Впоследствии сюда добавилась электротехника - там есть понятие "круговой частоты переменного тока". Для запоминания числа "Пи" было придумано двустишие (к сожалению, мы не знаем автора и места первой публикации его; но еще в конце 40-х годов двадцатого века московские школьники занимались по учебнику геометрии Киселева, где оно приводилось).

Двустишие написано по правилам старой русской орфографии, по которой послесогласной в конце слова обязательно ставился "мягкий" или "твердый" знак. Вот оно, это замечательное историческое двустишие:

Кто и шутя, и скоро пожелаетъ

"Пи" узнать число - ужъ знаетъ.

Тому, кто собирается в будущем заниматься точными расчетами, имеет смысл это запомнить. Так чему же равно число "Пи" с точностью до одиннадцати знаков? Сосчитай количество букв в каждом слове и напиши эти цифры подряд (первую цифру отдели запятой).

Такой точности уже вполне достаточно для инженерных расчетов. Кроме старинного существует и современный способ запоминания, на который указал в читатель, назвавшийся Георгием:

Чтобы нам не ошибаться,

Надо правильно прочесть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Надо только постараться

И запомнить всё как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Три, четырнадцать, пятнадцать,

Девять, два, шесть, пять, три, пять.

Чтоб наукой заниматься,

Это каждый должен знать.

Можно просто постараться

И почаще повторять:

«Три, четырнадцать, пятнадцать,

Девять, двадцать шесть и пять.»

Ну а математики с помощью современных компьютеров могут вычислить практически любое количество знаков числа "Пи".

7. Рекорд запоминания числа пи

Запомнить знаки пи человечество пытается уже давно. Но как уложить в память бесконечность? Любимый вопрос мнемонистов-профессионалов. Разработано множество уникальных теорий и приёмов освоения огромного количества информации. Многие из них опробованы на пи.

Мировой рекорд, установленный в прошлом столетии в Германии - 40 000 знаков. Российский рекорд значений числа пи 1 декабря 2003 года в Челябинске установил Александр Беляев. За полтора часа с небольшими перерывами на школьной доске Александр написал 2500 цифр числа пи.

До этого рекордным в России считалось перечислить 2000 знаков, что удалось сделать в 1999 году в Екатеринбурге. По словам Александра Беляева - руководителя центра развития образной памяти, такой эксперимент со своей памятью может провести любой из нас. Важно лишь знать специальные техники запоминания и периодически тренироваться.

Заключение.

Число пи появляется в формулах, используемых во многих сферах. Физика, электротехника, электроника, теория вероятностей, строительство и навигация - это лишь некоторые из них. И кажется, что подобно тому как нет конца знакам числа пи, так нет конца и возможностям практического применения этого полезного, неуловимого числа пи.

В современной математике число пи - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул.

Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа пи.

Точное значение числа π в современном мире представляет собой не только собственную научную ценность, но и используется для очень точных вычислений (например, орбиты спутника, строительства гигантских мостов), а также оценки быстродействия и мощности современных компьютеров.

В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Всё это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.

Проведенная работа мне была интересной. Я хотел узнать об истории числа π, практическом применении и думаю, что достиг поставленной цели. Подводя итог работы, я прихожу к выводу, что данная тема актуальна. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению. В своей работе я подробнее познакомился с числом - одной из вечных ценностей, которой человечество пользуется уже много веков. Узнал некоторые аспекты его богатейшей истории. Выяснил, почему древний мир не знал правильного отношения длины окружности к диаметру. Посмотрел наглядно, какими способами можно получить число. На основе экспериментов вычислил приближенное значение числа различными способами. Провел обработку и анализ результатов эксперимента.

Любой школьник сегодня должен знать, что обозначает и чему приближенно равно число. Ведь у всех первое знакомство с числом, использование его при вычислении длины окружности, площади круга происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными и уже через год - два мало кто помнит не только то, что отношение длины окружности к её диаметру одно и то же для всех окружностей, но даже с трудом вспоминают численное значение числа, равное 3,14.

Я попробовал приподнять завесу богатейшей истории числа, которым человечество пользуется уже много веков. Самостоятельно составил презентацию к своей работе.

История чисел увлекательна и загадочна. Я хотел бы продолжить исследования других удивительных чисел в математике. Это станет объектом моих следующих исследовательских изучений.

Список литературы.

1. Глейзер Г.И. История математики в школе IV- VI классы. - М.: Просвещение, 1982.

2. Депман И.Я., Виленкин Н.Я. За страницами учебника математики - М.: Просвещение, 1989.

3. Жуков А.В.Вездесущее число «пи». - М.: Едиториал УРСС, 2004.

4. Кымпан Ф. История числа «пи». - М.: Наука, 1971.

5. Свечников А.А. путешествие в историю математики - М.: Педагогика - Пресс, 1995.

6. Энциклопедия для детей. Т.11.Математика - М.: Аванта +, 1998.

Интернетресурсы:

- http:// crow.academy.ru/ materials_/pi/history.htm

Http://hab/kp.ru// daily/24123/344634/

ЧИСЛО p – отношение длины окружности к ее диаметру, – величина постоянная и не зависит от размеров окружности. Число, выражающее это отношение, принято обозначать греческой буквой 241 (от «perijereia » – окружность, периферия). Это обозначение стало употребительным после работы Леонарда Эйлера , относящейся к 1736, однако впервые оно было употреблено Уильямом Джонсом (1675–1749) в 1706. Как и всякое иррациональное число, оно представляется бесконечной непериодической десятичной дробью:

p = 3,141592653589793238462643… Нужды практических расчетов, относящихся к окружностям и круглым телам, заставили уже в глубокой древности искать для 241 приближений с помощью рациональных чисел. Сведения о том, что окружность ровно втрое длиннее диаметра, находятся в клинописных табличках Древнего Междуречья. Такое же значение числа p есть и в тексте Библии: «И сделал литое из меди море, – от края до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (3 Цар. 7. 23). Так же считали и древние китайцы. Но уже во 2 тыс. до н.э. древние египтяне пользовались более точным значением числа 241, которое получается из формулы для площади круга диаметра d :

Этому правилу из 50-й задачи папируса Райнда соответствует значение 4(8/9) 2 » 3,1605. Папирус Райнда, найденный в 1858, назван так по имени его первого владельца, его переписал писец Ахмес около 1650 до н.э., автор же оригинала неизвестен, установлено только, что текст создавался во второй половине 19 в. до н.э. Хотя каким образом египтяне получили саму формулу, из контекста неясно. В так называемом Московском папирусе, который был переписан неким учеником между 1800 и 1600 до н.э. с более древнего текста, примерно 1900 до н.э., есть еще одна интересная задача о вычислении поверхности корзины «с отверстием 4½». Неизвестно, какой формы была корзина, но все исследователи сходятся во мнении, что и здесь для числа p берется то же самое приближенное значение 4(8/9) 2 .

Чтобы понять, каким образом древние ученые получили тот или иной результат, нужно попытаться решить задачу, используя только знания и приемы вычислений того времени. Именно так поступают исследователи старинных текстов, однако решения, которые им удается найти, вовсе не обязательно «те самые». Очень часто для одной задачи предлагается несколько вариантов решения, каждый может выбрать себе по вкусу, однако никто не может утверждать, что именно им пользовались в древности. Относительно площади круга кажется правдоподобной гипотеза А.Е.Раик, автора многочисленных книг по истории математики: площадь круга диаметра d сравнивается с площадью описанного вокруг него квадрата, из которого по очереди удаляются малые квадраты со сторонами и (рис. 1). В наших обозначениях вычисления будут выглядеть так: в первом приближении площадь круга S равна разности между площадью квадрата со стороной d и суммарной площадью четырех малых квадратов А со стороной d :

В пользу этой гипотезы свидетельствуют аналогичные вычисления в одной из задач Московского папируса, где предлагается сосчитать

С 6 в. до н.э. математика стремительно развивалась в Древней Греции. Именно древнегреческие геометры строго доказали, что длина окружности пропорциональна ее диаметру (l = 2 p R ; R – радиус окружности, l – ее длина), а площадь круга равна половине произведения длины окружности и радиуса:

S = ½ l R = p R 2 .

Эти доказательства приписывают Евдоксу Книдскому иАрхимеду .

В 3 в. до н.э. Архимед в сочинении Об измерении круга вычислил периметры вписанных в окружность и описанных около нее правильных многоугольников (рис. 2) – от 6- до 96-угольника. Таким образом он установил, что число p находится между 3 10/71 и 3 1/7, т.е. 3,14084 < p < 3,14285. Последнее значение до сих пор используется при расчетах, не требующих особой точности. Более точное приближение 3 17/120 (p » 3,14166) нашел знаменитый астроном, создатель тригонометрии Клавдий Птолемей (2 в.), но оно не вошло в употребление.

Индийцы и арабы полагали, что p = . Это значение приводит так же и индийский математик Брахмагупта (598 – ок. 660). В Китае ученые в 3 в. использовали значение 3 7/50, которое хуже приближения Архимеда, но во второй половине 5 в. Цзу Чун Чжи (ок. 430 – ок. 501) получил для p приближение 355/113 (p » 3,1415927). Оно осталось неизвестно европейцам и было вновь найдено нидерландским математиком Адрианом Антонисом только в 1585. Это приближение дает ошибку лишь в седьмом десятичном знаке.

Поиски более точного приближения p продолжались и в дальнейшем. Например, аль-Каши (первая половина 15 в.) в Трактате об окружности (1427) вычислил 17 десятичных знаков p . В Европе такое же значение было найдено в 1597 году. Для этого ему пришлось вычислять сторону правильного 800 335 168-угольника. Нидерландский ученый Лудольф Ван Цейлен (1540–1610) нашел для него 32 правильных десятичных знака (опубликовано посмертно в 1615), это приближение называется лудольфовым числом.

Число p появляется не только при решении геометрических задач. Со времени Ф.Виета (1540–1603) разыскание пределов некоторых арифметических последовательностей, составляемых по простым законам, приводило к тому же числу p . В связи с этим в определении числа p принимали участие почти все известные математики: Ф.Виет, Х.Гюйгенс , Дж.Валлис, Г.В.Лейбниц , Л.Эйлер . Они получали различные выражения для 241 в виде бесконечного произведения, суммы ряда, бесконечной дроби.

Например, в 1593 Ф.Виет (1540–1603) вывел формулу

В 1658 англичанин Уильям Броункер (1620–1684) нашел представление числа p в виде бесконечной непрерывной дроби

однако неизвестно, как он пришел к этому результату.

В 1665 Джон Валлис (1616–1703) доказал, что

Эта формула носит его имя. Для практического нахождения числа 241 она мало пригодна, но полезна в различных теоретических рассуждениях. В историю науки она вошла как один из первых примеров бесконечных произведений.

Готфрид Вильгельм Лейбниц (1646–1716) в 1673 установил следующую формулу:

выражающую число p /4 как сумму ряда. Однако этот ряд сходится очень медленно. Чтобы вычислить p с точностью до десяти знаков, потребовалось бы, как показал Исаак Ньютон, найти сумму 5 млрд чисел и затратить на это около тысячи лет непрерывной работы.

Лондонский математик Джон Мэчин (1680–1751) в 1706, применяя формулу

получил выражение

которая до сих пор считается одной из лучших для приближенного вычисления p . Чтобы найти те же десять точных десятичных знаков, потребуется всего несколько часов ручного счета. Сам Джон Мэчин вычислил p со 100 верными знаками.

C помощью того же ряда для arctg x и формулы

значение числа p было получено на ЭВМ с точностью до ста тысяч десятичных знаков. Такого рода вычисления представляют интерес в связи с понятием случайных и псевдослучайных чисел. Статистическая обработка упорядоченной совокупности указанного количества знаков p показывает, что она обладает многими чертами случайной последовательности.

Есть несколько забавных способов запомнить число p точнее, чем просто 3,14. Например, выучив следующее четверостишие, можно без труда назвать семь десятичных знаков p :

Нужно только постараться

И запомнить все как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть .

(С.Бобров Волшебный двурог )

Подсчет количества букв в каждом слове следующих фраз так же дает значение числа p :

«Что я знаю о кругах?» (p » 3,1416). Эту поговорку предложил Я.И.Перельман.

«Вот и знаю я число, именуемое Пи. – Молодец!» (p » 3,1415927).

«Учи и знай в числе известном за цифрой цифру, как удачу примечать» (p » 3,14159265359).

Учитель одной из московских школ придумал строку: «Это я знаю и помню прекрасно», а его ученица сочинила забавное продолжение: «Пи многие знаки мне лишни, напрасны». Это двустишие позволяет определить 12 цифр.

А так выглядит 101 знак числа p без округления

3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679.

В наше время с помощью ЭВМ значение числа p вычислено с миллионами правильных знаков, но такая точность не нужна ни в каких вычислениях. А вот возможность аналитического определения числа ,

В последней формуле в числителе стоят все простые числа, а знаменатели отличаются от них на единицу, причем знаменатель больше числителя, если тот имеет вид 4n + 1, и меньше в противном случае.

Хотя еще с конца 16 в., т.е. с тех пор, как сформировались сами понятия рациональных и иррациональных чисел, многие ученые были убеждены в том, что p – число иррациональное, но только в 1766 немецкий математик Иоганн Генрих Ламберт (1728–1777), основываясь на открытой Эйлером зависимости между показательной и тригонометрической функциями, строго доказал это. Число p не может быть представлено в виде простой дроби, как ни были бы велики числитель и знаменатель.

В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом , доказал, что p – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения a n x n + a n– 1 x n– 1 + … + a 1 x + a 0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа p .

В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква p .

Марина Федосова

Поделиться