Электромагнитная совместимость рэс войсковой пво. Общая характеристика проблемы обеспечения внутриобъектовой эмс рэс Радиоэлектронная совместимость


Министерство транспорта Российской федерации (Минтранс России)

Федеральное агентство воздушного транспорта (Росавиация)

Федеральное Государственное бюджетное образовательное

учреждение профессионального высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДНСКОЙ АВИАЦИИ

Кафедра №12

КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ «ЭЛЕКТОМАГНИТНАЯ СОВМЕСТИМОСТЬ РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ»

Выполнил студент группы 803

Казаков Д.С.

Номер зачетной книжки 80042

Санкт-Петербург

Исходные данные для расчета

Исходные данные для расчета выбираются согласно трем последним цифрам номера зачетной книжки:

Частота основного излучения: f0Т = 220 [МГц];

Частота основного канала приема: f0R =126 [МГц];

Мощность излучения на частоте: PT(f0Т) = 10 [Вт];

Коэффициент усиления передающей антенны в направлении к приемной: GTR = 10 [дБ];

Коэффициент усиления приемной антенны в направлении к передающей: GRT =7 [дБ];

Расстояние между антеннами: d = 1,2 [км];

Восприимчивость приемника по частоте: PR(f0R) = -113 [дБм];

Скорость передачи данных: ns = 2,4 [кБит/с];

Индекс частотной модуляции: mf = 1,5.

В данной работе используются эксплуатационно-технические характеристики приемного тракта радиостанции авиационной воздушной связи Баклан-20:

Промежуточная частота РП: fIF = 20 [МГц];

Полоса пропускания по ПЧ: ВR = 16 [кГц];

Частота гетеродина РП: fL0 = 106 [МГц].

Порядок анализа ЭМС пары ИП-РП

1. Частота основного излучения ИП: f0Т = 220 [МГц].

2. Минимальная частота побочного излучения ИП: fSTmin = 22 [МГц].

3. Максимальная частота побочного излучения ИП: fSTmax = 2200 [МГц].

4. Частота основного канала приема РП: f0R =126 [МГц].

5. Минимальная частота побочного канала приема РП: fSRmin =12,6 [МГц].

6. Максимальная частота побочного канала приема РП: fSRmax=1260 [МГц].

7. Необходимый разнос между рабочими частотами ИП и РП:

0,2 f0R =25,2 [МГц].

ОО |220-126|<25,2 - не выполняется;

ОП 220 < 1260 - выполняется, 220> 12,6 - выполняется;

ПО 22 < 126 - выполняется, 2200 > 126 - выполняется;

ПП 22 < 1260 - выполняется, 2200 > 12,6 - выполняется.

По результатам сравнения частот излучения ИП и отклика РП делаем заключение: так как неравенство ОО не выполняется, то из данных комбинаций необходимо рассматривать ОП, ПО, ПП. Комбинация ОО исключается из анализа.

Последующий анализ ЭМС основывается на суммировании данных (в децибелах) согласно выражению:

IM(f,t,d,p) = PT (fT)+GT (fT,t,p)-L(fT,t,d,p)+GR(fR)-PR (fR)+CF(BT,BR,?f).

Амплитудная оценка помех

8. Выходная мощность ИП на частоте основного излучения:

PT(fOT) = 101g(PT (fОТ)/ PO) = 101g(10/10-3)=40 [дБм].

9. Выходная мощность ИП на частоте побочного излучения:

PT(fST) = PT(fОТ) - 60 = 37 - 60 = - 20 [дБм].

10. Усиление антенны ИП в направлении РП: GTR (f) =10 [дБ] .

11. Усиление антенны ИП в направлении ИП: GRT (f) =7 [дБ].

12. Потери при распространении радиоволн длиной л в свободном пространстве на расстоянии d согласно выражению:

L[дБ] = 201g(л / 4рd) = 20lg(c/4рfd).

· ОП: fSRmin=12,6 [МГц];

· ПО: fSTmin=22 [МГц];

· ПП: fSRmin=12,6 [МГц].

LОП[дБ] = 20lg(3*108 / 4*3,14*12,6*106*1200) = -56[дБ];

LПО[дБ] = 20lg(3*108 / 4*3,14*22*106*1200) = -60,9 [дБ];

LПП[дБ]= 20lg(3*108 / 4*3,14*12,6*106*1200) = -56 [дБ].

частота помеха усиление антенна

13. Мощность помехи на входе РП РA(f) дБм определяется по сумме данных в строках 8...12:

ОП: РA(f) = PT(fOT) + GTR (f) + GRT (f) + LОП = 1 [дБм];

ПО: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПО = -63,9[дБм];

ПП: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПП = -59[дБм].

14. Восприимчивость РП на частоте основного канала приема:

PR(f0R)= -113[дБм].

15. Восприимчивость РП на частоте побочного канала приема:

PR(fSR)= PR(f)+ 80 = -113+80=-33 [дБм].

16.Предварительная оценка уровня ЭМП в дБ, определяемая по разности данных в строках 13 и 14 или 13 и 15:

· ОП: 1+33=34[дБм];

· ПО: -63,9+113=49,1[дБм];

· ПП: -59+33=-26[дБм].

По результатам полученных данных в делаем заключение о необходимости перейти к ЧОП - частотной оценке помех, т.к. ОО, ОП и ПО > -10 дБ.

Частотная оценка помех

I. Коррекция результатов АОП, учитывающая различие полос частот ИП и РП

17. Частота следования импульсов на выходе ИП при импульсном излучении: fc=ns/2

fc=2,4/2= 1,2 [кГц].

18. Ширина полосы частот ИП: ВT =2F(1+ mf), т.к. mf > 1

ВT =2*1,2(1+1,5)=6 [кГц].

19.Ширина полосы частот РП: ВR = 16 [кГц].

20. Поправочный коэффициент:

т.к. соотношение полос частот ИП и РП - ВR >ВT , следовательно, нет необходимости в коррекции.

II. Коррекция результатов АОП, учитывающая разнос частот ИП и РП

22.Частота гетеродина РП: fL0 = 106 [МГц].

23.Промежуточная частота РП: fIF = 20 [МГц].

24. Т.к. комбинация ОО отсутствует, то пункт 24 и 25 пропускаем.

26.Определяем величину отношения:

f0T /(fL0+ fIF) = 220/(106+20)=1,74 (ближайшее целое число 2).

27. Результат перемножения данных строк 22 и 26:

106* 2 = 212 [МГц].

28. Определяем разнос частот в комбинации ОП по данным строк 1, 23, 27:

|(l)± (23) -(27)| = |220± 20-212| = 12 [МГц].

29. Поправку CF дБ в комбинации ОП, определяем согласно 28 строки и рис. 6.1 учебного пособия:

CF=40lg((BT+BR)/2?f)= 40lg((6*103+16*103)/2*12*106)=-121,5[дБ].

30. Определяем величину отношения f0R/f0T:

fОR/fOT =116/220 = 0,51; выбираем f0R/f0T =1 как ближайшее целое число.

31. Результат перемножения данных строк 1и 30: 220*1 = 220 [МГц].

32. Определяем разнос частот в комбинации ПО по данным строк 4 и 31: ?f=220-116=94 [МГц].

33. Определяем поправку CF дБ в комбинации ПО, согласно данным предыдущего пункта и рис 6.1:

CF=40lg((BT+BR)/2?f) = 40lg((6*103+16*103)/2*94*106) = -157,3[дБ].

34. Т.к. комбинация ПП отсутствует, то пункт 34 и 35 пропускаем.

36. Итоговый результат IM дБ, получаемый суммированием данных в строках:

21 и 25 для ОО,

21 и 29 для ОП,

21и 33 для ПО,

21 и 35 для ПП.

Если для какой-то комбинации IM ?-10 дБ, то можно считать, что она отсутствует.

· ОП: 34 -138,6 = -87,6[дБм];

· ПО: 49,1-157,3=-108,2[дБм];

Для комбинаций ОО, ОП, ПО IM ? -10дБ, т.е. помеха при данном разносе частот отсутствует, следовательно, ДОП не нужна.

Таблица 1

№ строки

Комбинация

ЧОП 1 коррекция

ЧОП 2 коррекция

Используемая литература

1. Фролов В.И. Электромагнитная совместимость радиоэлектронного оборудования: Учебное пособие/Академия ГА, Санкт-Петербург,2004.

Подобные документы

    Актуальность проблемы электромагнитной совместимости (ЭМС) радиоэлектронных систем. Основные виды электромагнитных помех. Материалы, обеспечивающие токопроводящий монтаж. Применение радиопоглощающих материалов. Методы и оборудование для проверки ЭМС.

    дипломная работа , добавлен 08.02.2017

    Расчет полосы пропускании общего радиотракта приемника. Выбор числа преобразований частоты и номиналов промежуточных частот. Структурная схема приемника. Распределение избирательности и усиления по трактам. Определение коэффициента шума приемника.

    курсовая работа , добавлен 13.05.2009

    Расчет параметров помехопостановщика. Мощность передатчика заградительной и прицельной помех, средств создания пассивных помех, параметров уводящих помех. Алгоритм помехозащиты структуры и параметров. Анализ эффективности применения комплекса помех.

    курсовая работа , добавлен 21.03.2011

    Дискретные способы модуляции, основанные на дискретизации непрерывных процессов как по амплитуде, так и по времени. Преимущество цифровых методов записи, воспроизведения и передачи аналоговой информации. Амплитудная модуляция с одной боковой полосой.

    реферат , добавлен 06.03.2016

    График зависимости предельной дальности прямой видимости от высоты цели, при фиксированной высоте установки антенны. Расчет параметров средств создания пассивных помех. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.

    курсовая работа , добавлен 20.03.2011

    Расчет структурной схемы частотной модуляции приемника. Расчет полосы пропускания линейного тракта, допустимого коэффициента шума. Выбор средств обеспечения избирательности по соседнему и зеркальному каналу. Расчет входной цепи с трансформаторной связью.

    курсовая работа , добавлен 09.03.2012

    Расчет мощности передатчика заградительной и прицельной помех. Расчет параметров средств создания уводящих и помех. Расчет средств помехозащиты. Анализ эффективности применения комплекса помех и средств помехозащиты. Структурная схема постановщика помех.

    курсовая работа , добавлен 05.03.2011

    Пример снижения уровня помех при улучшении заземления. Улучшение экранирования. Установка фильтров на шинах тактовых сигналов. Примеры осциллограмм передаваемых сигналов и эффективность подавления помех. Компоненты для подавления помех в телефонах.

    курсовая работа , добавлен 25.11.2014

    Состав структурной схемы цифрового радиоприемника. Выбор элементной базы. Расчет частотного плана, энергетического плана и динамического диапазона. Выбор цифровой элементной базы приемника. Частота полосы сигналов. Максимальный коэффициент усиления.

    курсовая работа , добавлен 19.12.2013

    Создание модели антенны и оптимизация ее конструкции. Свойства антенны горизонтальной поляризации с учетом свойств поверхности земли в направлении максимального КНД и влияние диаметра проводников симметричного вибратора на рабочую полосу частот.

Министерство транспорта Российской федерации (Минтранс России)

Федеральное агентство воздушного транспорта (Росавиация)

Федеральное Государственное бюджетное образовательное

учреждение профессионального высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГРАЖДНСКОЙ АВИАЦИИ

Кафедра №12


КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ «ЭЛЕКТОМАГНИТНАЯ СОВМЕСТИМОСТЬ РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ»


Выполнил студент группы 803

Казаков Д.С.

Номер зачетной книжки 80042


Санкт-Петербург


Исходные данные для расчета


Исходные данные для расчета выбираются согласно трем последним цифрам номера зачетной книжки:

Частота основного излучения: f0Т = 220 [МГц];

Частота основного канала приема: f0R =126 [МГц];

Мощность излучения на частоте: PT(f0Т) = 10 [Вт];

Коэффициент усиления передающей антенны в направлении к приемной: GTR = 10 [дБ];

Коэффициент усиления приемной антенны в направлении к передающей: GRT =7 [дБ];

Расстояние между антеннами: d = 1,2 [км];

Восприимчивость приемника по частоте: PR(f0R) = -113 [дБм];

Скорость передачи данных: ns = 2,4 [кБит/с];

Индекс частотной модуляции: mf = 1,5.

В данной работе используются эксплуатационно-технические характеристики приемного тракта радиостанции авиационной воздушной связи Баклан-20:

Промежуточная частота РП: fIF = 20 [МГц];

Полоса пропускания по ПЧ: ВR = 16 [кГц];

Частота гетеродина РП: fL0 = 106 [МГц].


Порядок анализа ЭМС пары ИП-РП


Частота основного излучения ИП: f0Т = 220 [МГц].

Минимальная частота побочного излучения ИП: fSTmin = 22 [МГц].

Максимальная частота побочного излучения ИП: fSTmax = 2200 [МГц].

Частота основного канала приема РП: f0R =126 [МГц].

Минимальная частота побочного канала приема РП: fSRmin =12,6 [МГц].

Максимальная частота побочного канала приема РП: fSRmax=1260 [МГц].

Необходимый разнос между рабочими частотами ИП и РП:

2 f0R =25,2 [МГц].

ОО |220-126|<25,2 - не выполняется;

ОП 220 < 1260 - выполняется, 220> 12,6 - выполняется;

ПО 22 < 126 - выполняется, 2200 > 126 - выполняется;

ПП 22 < 1260 - выполняется, 2200 > 12,6 - выполняется.

По результатам сравнения частот излучения ИП и отклика РП делаем заключение: так как неравенство ОО не выполняется, то из данных комбинаций необходимо рассматривать ОП, ПО, ПП. Комбинация ОО исключается из анализа.

Последующий анализ ЭМС основывается на суммировании данных (в децибелах) согласно выражению:

(f,t,d,p) = PT (fT)+GT (fT,t,p)-L(fT,t,d,p)+GR(fR)-PR (fR)+CF(BT,BR,?f).


Амплитудная оценка помех


Выходная мощность ИП на частоте основного излучения:(fOT) = 101g(PT (fОТ)/ PO) = 101g(10/10-3)=40 [дБм].


Выходная мощность ИП на частоте побочного излучения:

(fST) = PT(fОТ) - 60 = 37 - 60 = - 20 [дБм].


Усиление антенны ИП в направлении РП: GTR (f) =10 [дБ] .

Усиление антенны ИП в направлении ИП: GRT (f) =7 [дБ].

Потери при распространении радиоволн длиной ? в свободном пространстве на расстоянии d согласно выражению:[дБ] = 201g(? / 4?d) = 20lg(c/4?fd).


·ОП: fSRmin=12,6 [МГц];

·ПО: fSTmin=22 [МГц];

·ПП: fSRmin=12,6 [МГц].

ОП[дБ] = 20lg(3*108 / 4*3,14*12,6*106*1200) = -56[дБ];ПО[дБ] = 20lg(3*108 / 4*3,14*22*106*1200) = -60,9 [дБ];ПП[дБ]= 20lg(3*108 / 4*3,14*12,6*106*1200) = -56 [дБ].

частота помеха усиление антенна

13. Мощность помехи на входе РП РA(f) дБм определяется по сумме данных в строках 8...12:


ОП: РA(f) = PT(fOT) + GTR (f) + GRT (f) + LОП = 1 [дБм];

ПО: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПО = -63,9[дБм];

ПП: РA(f) = PT(fST) + GTR (f) + GRT (f) + LПП = -59[дБм].


Восприимчивость РП на частоте основного канала приема:

(f0R)= -113[дБм].

Восприимчивость РП на частоте побочного канала приема:


PR(fSR)= PR(f)+ 80 = -113+80=-33 [дБм].


Предварительная оценка уровня ЭМП в дБ, определяемая по разности данных в строках 13 и 14 или 13 и 15:

·ОП: 1+33=34[дБм];

·ПО: -63,9+113=49,1[дБм];

·ПП: -59+33=-26[дБм].

По результатам полученных данных в делаем заключение о необходимости перейти к ЧОП - частотной оценке помех, т.к. ОО, ОП и ПО > -10 дБ.


Частотная оценка помех

Коррекция результатов АОП, учитывающая различие полос частот ИП и РП

Частота следования импульсов на выходе ИП при импульсном излучении: fc=ns/2

2,4/2= 1,2 [кГц].


Ширина полосы частот ИП: ВT =2F(1+ mf), т.к. mf > 1


ВT =2*1,2(1+1,5)=6 [кГц].


Ширина полосы частот РП: ВR = 16 [кГц].

Поправочный коэффициент:

т.к. соотношение полос частот ИП и РП - ВR >ВT , следовательно, нет необходимости в коррекции.. Коррекция результатов АОП, учитывающая разнос частот ИП и РП

Частота гетеродина РП: fL0 = 106 [МГц].

Промежуточная частота РП: fIF = 20 [МГц].

Т.к. комбинация ОО отсутствует, то пункт 24 и 25 пропускаем.

Определяем величину отношения:

T /(fL0+ fIF) = 220/(106+20)=1,74 (ближайшее целое число 2).


Результат перемножения данных строк 22 и 26:

* 2 = 212 [МГц].

Определяем разнос частот в комбинации ОП по данным строк 1, 23, 27:

|(l)± (23) -(27)| = |220± 20-212| = 12 [МГц].

Поправку CF дБ в комбинации ОП, определяем согласно 28 строки и рис. 6.1 учебного пособия:

40lg((BT+BR)/2?f)= 40lg((6*103+16*103)/2*12*106)=-121,5[дБ].


Определяем величину отношения f0R/f0T:ОR/fOT =116/220 = 0,51; выбираем f0R/f0T =1 как ближайшее целое число.

Результат перемножения данных строк 1и 30: 220*1 = 220 [МГц].

Определяем разнос частот в комбинации ПО по данным строк 4 и 31: ?f=220-116=94 [МГц].

Определяем поправку CF дБ в комбинации ПО, согласно данным предыдущего пункта и рис 6.1:

40lg((BT+BR)/2?f) = 40lg((6*103+16*103)/2*94*106) = -157,3[дБ].


Т.к. комбинация ПП отсутствует, то пункт 34 и 35 пропускаем.

Итоговый результат IM дБ, получаемый суммированием данных в строках:

и 25 для ОО,

и 29 для ОП,

и 33 для ПО,

и 35 для ПП.

Если для какой-то комбинации IM ?-10 дБ, то можно считать, что она отсутствует.

·ОП: 34 -138,6 = -87,6[дБм];

·ПО: 49,1-157,3=-108,2[дБм];

Для комбинаций ОО, ОП, ПО IM ? -10дБ, т.е. помеха при данном разносе частот отсутствует, следовательно, ДОП не нужна.


Таблица 1

№ строкиКомбинацияОООППОППАОП840,09-20,0-20,01010,010,010,0117,07,07,012-56-60,9-56131-63,9-5914-113,015-33,0-33,0163449,1-26ЧОП 1 коррекция20213449,1ЧОП 2 коррекция2529-121,533-157,33536-87,5-108,2Используемая литература


1. Фролов В.И. Электромагнитная совместимость радиоэлектронного оборудования: Учебное пособие/Академия ГА, Санкт-Петербург,2004.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В целом задача определения степени достижения ЭМС в конкретной ситуации сводится к решению двух частных задач: внешней и внутренней (по отношению к данному РЭС ) .

Внешняя задача заключается в оценке электромагнитной обстановки (ЭМО) в точке расположения приемника-рецептора , определяемой как совокупность параметров полезного и мешающих сигналов на входе рецептора. При этом составляется статистическая модель ЭМО , которая наряду с постоянными параметрами (расстройки несущих частот ПС и МС, их средние значения мощностей и др.) включает в себя все вероятностные параметры полезного и мешающих радиосигналов с учетом статистической природы их формирования и распространения: случайности параметров модулирующих сигналов при данном виде модуляции, быстрых и медленных замираний полезного и мешающих радиосигналов, возможных нелинейных эффектов в приемнике при повышенных уровнях радиосигналов на входе приемника). Внутренняя задача заключается в количественном определении степени воздействия непреднамеренных помех на качество функционирования РЭС. Решение внутренней задачи обычно производится с использованием методов статистической радиотехники и статистической теории оптимального приема сигналов, развитых применительно к случаям воздействия непреднамеренных помех с учетом необходимости обеспечения ЭМС РЭС.

Решение о том, достигнута ли ЭМС рассматриваемой совокупности РЭС, должно приниматься, исходя из допустимости или недопустимости рассчитанных процентов временинедопустимого снижения качества функционирования радиоприемных устройств всех РЭС в данной ЭМО из-за воздействия мешающих сигналов. Отсюда вытекает трехэтапная схема решения задачи оценки ЭМС:



Этап 1 . Решается задача оценки ЭМО . Как отмечалось выше, ее исходными данными являются географические и энергетические характеристики и параметры источников полезных и мешающих сигналов. Результатом решения этой задачи являются количественные детерминированные и вероятностные характеристики полезных и мешающих сигналов, воздействующих на приемное устройство каждого из РЭС. При этом совокупность мешающих сигналов, потенциально опасных в отношении нарушения ЭМС и требующих проведения количественного анализа, называют помеховой обстановкой .

Этап 2 . Решается задача оценки ухудшения качества приема полезного сигнала из-за влияния непреднамеренных помех. Исходными данными для ее решения являются результаты решения задачи первого этапа. Результат решения задачи второго этапа характеризует степень.

Этап 3. По результатам решения задачи второго этапа производится оценка ЭМС РЭС , исходя из превышения или непревышения допустимых значений рассчитанными по выбранному критерию ЭМС процентами временинедопустимого снижения качества функционирования радиоприемных устройств всех РЭС в данной ЭМО из-за воздействия мешающих сигналов.

Оценка ЭМС РЭС может производиться различными методами:

1/ расчетным;

2/ экспериментальным – на основе измерений ряда параметров взаимодействующих РЭС;

3/ смешанным (сочетание расчетного и экспериментального методов).

Расчетные методы оценки ЭМС используются при решении следующих задач:

Прогнозирование электромагнитной обстановки;

Перспективное планирование и эффективное использование спектра радиочастот;

Подготовка материалов для заключений (решений) на право пользования определенными полосами частот;

Определение степени обеспечения ЭМС РЭС;

Оценка степени влияния непреднамеренных помех на качество функционирования РЭС;



Оценка эффективности мер по обеспечению ЭМС РЭС;

Разработка норм частотно-территориального разноса между РЭС.

Учитывая важность решения задач ЭМС, во многих странах, в том числе и в России, существует целая система нормативных документов (Государственных стандартов, Норм на параметры излучения передатчиков и т.д.), которые регламентируют основные характеристики и параметры РЭС, влияющие на их ЭМС. К числу наиболее важных нормативных документов такого рода относятся следующие:

ГОСТ 30372- 95. Совместимость технических средств электромагнитная. Термины и определения;

ГОСТ 23882-710. Совместимость радиоэлектронных средств электромагнитная. Номенклатура параметров и классификация технических характеристик;

ГОСТ Р50842-95. Устройства радиопередающие народнохозяйственного применения. Требования к побочным радиоизлучениям. Методы измерения и контроля;

ГОСТ Р 51319-910. Совместимость технических средств электромагнитная. Приборы для измерения индустриальных радиопомех. Технические требования и методы испытаний.

ГОСТ Р 51320-910. Совместимость технических средств электромагнитная. Радиопомехи индустриальные. Методы испытаний технических средств – источников индустриальных помех;

Нормы 19-02. Нормы на ширину полосы радиочастот и внеполосные излучения радиопередатчиков гражданского применения.

1.5 Общие методы обеспечения ЭМС

Обеспечение ЭМС на практике достигается реализацией комплекса обязательных для пользователей радиоспектра организационно-технических мер, устанавливаемых и контролируемых соответствующими государственными органами:

а) централизованное распределение и выделение полос частот различным службам радиосвязи;

б) научно обоснованное управление использованием радиоспектра;

в) жесткий контроль выполнения нормативных показателей ЭМС (в частности, ограничение мощности радиоизлучений в определенных направлениях).

Одним из важнейших технических способов достижения ЭМС РЭС является обеспечение частотно-территориального разноса (ЧТР) этих РЭС. ЧТР представляет собой совокупность частотного разноса (ЧР – разности рабочих частот передатчиков ПС и МС) и минимально необходимого территориального разноса (ТР) каждого из передатчиков мешающих сигналов относительно рецептора. ТР для каждого мешающего передатчика зависит, в частности, и от совокупности параметров Rм, и так называемого “ситуационного плана” (рис. 1.8).

На рис.1.8 приняты следующие обозначения: ПРС – радиостанция основной (полезной) системы радиосвязи (СРС), подверженная воздействию МС от другого РЭС; МРС - радиостанция мешающей СРС, являющаяся источником МС для рассматриваемой ПРС; Rc – длина трассы распространения ПС; Rм – длина трассы распространения МС; f пд с –частота ПС; ДНА – диаграмма направленности антенны; МС - мещающий радиосигнал; j м – угол прихода МС; f пд м – частота МС;; a м – угол исхода МС.

Помимо общих организационно-технических мер применяются различные

специальные технические средства, уменьшающие влияние МС на качество приема ПС посредством снижения уровня МС на входе рецептора или ослабления влияния МС на качество приема за счет использования компенсаторов помех. Рассмотрение таких средств проведено в главе 10.



Рис.1.8 Cитуационный план помеховой ситуации при воздействии одного мешающего сигнала

Общая методика анализа ЭМС РЭС, включающая в себя общий алгоритм анализа ЭМС, подготовку и первичный анализ исходных данных для произвольного сложного случая ЭМО, алгоритм проверки выполнения ЭМС для каждоговарианта взаимодействия в данной ЭМО, примеры расчетов ЭМСдля различных вариантов и список литературы, содержащий большое количество нужных для расчетов Рекомендаций МСЭ-Р, даны в .

Бурное развитие современных систем связи, радиолокации, радионавигации, радиоуправления и т. п. приводит к росту числа радиоэлектронных средств (РЭС) и электромагнитных излучений в окружающем нас пространстве. В результате работа этих средств происходит в условиях непреднамеренных электромагнитных помех, которые средства создают друг другу. Одна из главных задач, которую приходится решать, организуя совместную работу РЭС, состоит в том, чтобы в этих условиях обеспечить требуемое качество функционирования каждого РЭС. Если эта задача решена, то говорят, что обеспечена электромагнитная совместимость (ЭМС) РЭС.

Электромагнитная совместимость радиоэлектронных средств – это способность радиоэлектронных средств одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных помех и не создавать недопустимых радиопомех другим радиоэлектронным средствам. При этом непреднамеренной считают любую радиопомеху, создаваемую источником искусственного происхождения, не предназначенную для нарушения функционирования радиоэлектронных средств.

Изначально проблема ЭМС формировалась как проблема обеспечения совместной работы радиоэлектронных средств, в состав которых входили радиопередающие и радиоприемные устройства. Но по мере развития радиотехники и радиоэлектроники стало ясно, что проблема не может быть ограничена только радиоэлектронными средствами указанного вида. Любые устройства, содержащие радиоэлектронные схемы, могут быть как источниками электромагнитных помех для других подобных устройств, так и испытывать мешающее воздействие с их стороны. Появилось такое понятие как техническое средство , и проблема ЭМС стала проблемой ЭМС технических средств. В области ЭМС понятие «техническое средство» имеет свое специфическое определение.

Техническое средство (ТС) – это изделие, оборудование, аппаратура или их составные части, функционирование которых основано на законах электротехники, радиотехники и (или) электроники, содержащие электронные компоненты и (или) схемы, которые выполняют одну или несколько следующих функций: усиление, генерирование, преобразование, переключение и запоминание.

Техническое средство может быть радиоэлектронным средством (РЭС), средством вычислительной техники (СВТ), средством электронной автоматики (СЭА), электротехническим средством, а , научного и медицинского назначения (ПНМ установки).

Электромагнитная совместимость технических средств – способность технического средства функционировать с заданным качеством в заданной электромагнитной обстановке и не создавать недопустимых электромагнитных помех другим техническим средствам.

Оценка ЭМС базируется на оценке качества работы технического средства. Технические средства разных видов различаются по принципам своей работы и своим рабочим характеристикам, и, следовательно, оценка влияния внешних электромагнитных помех может выполняться по-разному для разных видов ТС. В дальнейшем ограничимся рассмотрением РЭС, в состав которых входят радиопередающие и радиоприемные устройства. Основное внимание будет уделено оценке ЭМС систем телекоммуникации.

Условия, в которых работают РЭС, часто называют электромагнитной обстановкой. В общем случае под электромагнитной обстановкой (ЭМО) понимают совокупность электромагнитных явлений, процессов в заданной области пространства, частотном и временном диапазонах. Для телекоммуникационных систем ЭМО определяется как пространственное распределение электромагнитных полей в местах, где размещаются антенны этих систем. Числовой характеристикой ЭМО обычно является значение напряженности электромагнитного поля (выражается в вольтах на метр [В/м]) или плотности потока мощности (ватт на метр квадратный [Вт/м 2 ]).

Однако качество работы РЭС, в состав которого входит радиоприемное устройство, зависит не только от электромагнитной обстановки. Оно определяется также помехоустойчивостью и/или помехозащищенностью РЭС. Понятия помехоустойчивости и помехозащищенности распространяются на помехи, которые могут поступать в радиоаппаратуру самыми разными путями (например, через антенну приемника или по цепям питания). Иногда эти понятия рассматривают как синонимы, хотя это не так.

Помехоустойчивость РЭС – способность РЭС сохранять заданное качество функционирования при воздействии на него внешних помех с регламентируемыми значениями параметров в отсутствие дополнительных средств защиты от помех, не относящихся к принципу действия или построения РЭС.

Помехозащищенность РЭС – способность ослаблять действие электромагнитной помехи за счет дополнительных средств защиты от помех, не относящихся к принципу действия или построения РЭС.

Высокая степень помехоустойчивости РЭС не гарантирует автоматического обеспечения ЭМС, но значительно облегчает возможность организации совместной работы. Что касается средств помехозащиты, то по отношению к ним следует проявлять определенную осторожность. Устройство подавления помех обычно ориентировано на подавление помех определенного вида. Если оно применяется в сложной ЭМО, где присутствуют мешающие сигналы, для подавления которых используемое устройство не предназначено, то его применение может не дать ожидаемого эффекта и даже привести к росту помех. Например, при приеме узкополосных сигналов для подавления импульсных помех во входных цепях приемников используют нелинейные устройства (диодные ограничители) с последующей узкополосной фильтрацией. Если наряду с импульсными помехами на входе приемника присутствуют непрерывные мешающие сигналы, то наличие нелинейных элементов может привести к появлению новых мешающих частот , попадающих в полосу пропускания приемника и снижающих качество приема полезного сигнала. Обычно схемы подавления помех такого типа можно отключить и включать только по мере необходимости.

    1. Причины появления проблемы ЭМС

Можно указать несколько факторов, которые приводят к появлению проблемы ЭМС РЭС.

1. Основной причиной, порождающей проблему электромагнитной совместимости радиоэлектронных средств, является ограниченность освоенного радиочастотного спектра при непрерывном росте числа его потребителей.

Если рассмотреть, например, диапазон высоких частот (3…30 МГц), то он занимает полосу 27 МГц. При ширине канала 3 кГц (например, при однополосной амплитудной модуляции) в нем можно разместить 9000 каналов. Число желающих пользоваться этим диапазоном (и действительно работающих в нем) неизмеримо больше числа каналов, которые можно в нем выделить, и превышает миллион пользователей. Это означает, что многие РЭС в этом диапазоне частот работают на одинаковых частотах. Такая возможность существует, если между средствами, работающими на одной и той же частоте, уровень помех не приводит к недопустимому снижению качества работы РЭС.

Возможность многократного использования радиочастот зависит от условий распространения радиоволн в том или ином диапазоне частот, технических характеристик приемо-передающих и антенных устройств, используемых типов сигналов и видов модуляции и т. д. С большим успехом многократное использование той же самой частоты применяется в сотовой подвижной связи. Однако не всегда разнесение РЭС по расстоянию может быть использовано для обеспечения ЭМС и повышения эффективности использования радиочастотного спектра. Особо остро проблема ЭМС встает при размещении радиосредств различного назначения на ограниченных площадях (морские порты, аэродромы и т. п.) и объектах, как подвижных (корабль, самолет и т. п.), так и стационарных (приемо-передающие центры, мачты для размещения приемных и передающих антенн и т. п.).

Радиоэлектронные системы кораблей, особенно военных, несут серьезные потери в своих рабочих характеристиках из-за электромагнитных помех, не учтенных при проектировании корабля и размещении на нем радиооборудования. Проблема ЭМС на боевых кораблях обостряется дополнительно ввиду наложения нескольких факторов, а именно :

– более высокая насыщенность радиоэлектронным оборудованием, чем раньше, при меньшей гибкости в его размещении из-за наличия антенных фазированных решеток;

– рост мощности передатчиков. Увеличение уровня мощности связных передатчиков приводит к увеличению дальности связи. Однако это единственный положительный фактор такого подхода. Все остальные эффекты, связанные с ростом мощности передатчиков, являются отрицательными;

– повышение чувствительности систем к электромагнитным полям, особенно систем, использующих твердотельные приборы;

– переход в контурах управления от механических систем к электрическим и электромагнитным с применением твердотельных приборов;

– ужесточение норм на уровни излучений, облучающих обслуживающий персонал.

Последнее обстоятельство расширяет область опасных излучений и накладывает дальнейшие ограничения на размещение оборудования на верхней палубе и надстройках.

Хотя число электронных систем , устанавливаемых на современных боевых кораблях, растет, пространство, пригодное для их размещения, разве что уменьшается. Менее половины имеющихся надстроек могут быть использованы для установки антенн. Из-за необходимости обеспечить свободную траекторию стрельбы для различных систем оружия эти антенны в основном концентрируются в середине корабля на грот и фок-мачтах. Ограниченность пространства для монтажа антенн приводит к тому, что передающая и приемная антенны систем, работающих в диапазоне средних частот (СЧ), и систем, работающих в диапазоне высоких частот (ВЧ), размещаются на расстояниях менее 30 м друг от друга, а для систем сверхвысоких частот (СВЧ) расстояние составляет менее 10 м. При этом расстояние между антеннами систем, работающими в разных диапазонах частот (например, антенной системы связи, работающей в диапазоне ВЧ, и антенной РЛС диапазона СВЧ) часто составляет менее 3 м. Большое количество РЭС и скученность антенн приводят к значительным взаимным помехам между корабельными РЭС. Нет ничего необычного в том, что на входе корабельного радиоприемника могут появиться высокочастотные напряжения, значения которых составляют десятки вольт.

Аналогичные трудности возникают и в авиации, о чем можно судить по количеству средств и антенн, размещаемых на самолетах, особенно военных. Так, по сообщениям американской печати , на самолете-разведчике W-2V размещается 21 радиостанция при 38 антеннах, для бомбардировщика B-52 эти цифры составляют соответственно 16 и 29, а для истребителя F-4 они равны 8 и 12.

Вышки, на которых размещаются антенны телевизионного вещания, ретрансляторов или базовых станций подвижной сотовой связи, широко используются для размещения других систем телекоммуникации, что также требует решения задач обеспечения ЭМС.

Ввиду ограниченности частотного ресурса, выделяемого для средств, работающих на объектах, и ограниченных возможностях пространственного разнесения антенн РЭС, решение проблемы обеспечения ЭМС РЭС на объектах является особенно трудным.

2. Наличие у радиоэлектронных средств параметров ЭМС.

Параметры, характеризующие радиоэлектронное средство, можно разбить на две группы. К первой группе относятся параметры, определяющие функциональное назначение РЭС , ко второй – параметры ЭМС. Параметрами, определяющими функциональное назначение РЭС, являются параметры, изменение которых влияет на качество передачи и/или приема информации в радиоканале при отсутствии непреднамеренных помех. Эти параметры определяют энергетические потенциалы радиопередающих устройств на выделенных им для работы радиоканалах, а также способность радиоприемных устройств качественно принимать полезный сигнал при отсутствии непреднамеренных помех за пределами отведенного для работы РЭС частотного канала. Параметрами ЭМС являются параметры, значение которых влияет на качество совместной работы совокупности радиоэлектронных средств при наличии непреднамеренных помех за пределами радиоканала, отведенного для работы РЭС.

Например, функциональными параметрами радиопередатчика являются мощность излучения передатчика на присвоенной ему частоте, ширина полосы частот основного излучения передатчика и др., а параметрами ЭМС – уровни излучений на гармониках, уровни шумовых излучений и др. Излучения на гармониках или шумовые излучения передатчика находятся за пределами радиоканала, который отведен для работы радиопередатчика. Однако, попадая в основной канал приема РЭС, содержащих радиоприемные устройства, которые работают на соответствующих частотах, эти излучении могут снизить качество приема полезных сигналов. Для радиоприемного устройства (РПУ) параметрами, определяющими качество его работы в соответствии с функциональным назначением, являются чувствительность, избирательность, динамический диапазон по основному каналу приема и др., в то время как параметрами ЭМС выступают такие параметры, как восприимчивость РПУ по побочным каналам приема (ПКП), динамические диапазоны по нелинейным эффектам и др., определяющие качество работы РПУ при наличии непреднамеренных помех от других РЭС, излучения которых лежат за пределами полосы пропускания приемника. Для антенных систем функциональными параметрами являются, например, ширина главного лепестка диаграммы направленности антенны в горизонтальной и вертикальной плоскостях и коэффициент усиления антенны, а параметрами ЭМС – уровни боковых и задних лепестков относительно главного.

Параметры ЭМС радиоприемных и радиопередающих устройств нормируют. Нормативные требования к параметрам ЭМС РЭС устанавливают, исходя из технических и конструкторско-технологических возможностей получить желаемые значения параметров, что определяется развитием радиотехники и электроники на момент разработки норм, а также исходя из предполагаемых условий эксплуатации оборудования , для которого нормируются параметры ЭМС. Нормы, с одной стороны, устанавливают требования к параметрам мешающих излучений, а с другой стороны,  требования к минимальной помехоустойчивости РЭС в заданных условиях эксплуатации. В связи с этим нормативные требования к параметрам ЭМС для гражданской и военной радиоаппаратуры могут существенно различаться. Выполнение норм, установленных на параметры ЭМС, облегчает решение проблемы обеспечения ЭМС, но не устраняет саму проблему.

3. Влияние окружения на уровни и спектральный состав непреднамеренных помех.

Отражения от окружающих объектов увеличивают или уменьшают уровень помехи. Нелинейности окружения изменяют спектральный состав помех.

4. Наличие внешнего фона.

Существенный вклад в формирование электромагнитной обстановки вносят излучения со стороны различного рода энергетических и промышленных установок, которые не предназначены для излучения электромагнитной энергии, но в силу специфики своей работы являются источниками непреднамеренных помех. Это так называемые индустриальные помехи. Наличие индустриальных помех часто не позволяет полностью реализовать потенциальные возможности радиоаппаратуры, в частности чувствительность РПУ, и усложняет совместную работу РЭС. Влияние индустриальных помех особенно заметно в крупных промышленных городах, на больших промышленных предприятиях и на подвижных объектах, имеющих крупное энергетическое оборудование и радиоэлектронные системы, таких, как самолеты и корабли.

Таким образом предлагаемые решения проблемы ЭМС РЭС в общем случае должны учитывать следующие факторы: ограничения на возможный частотно-территориальный разнос РЭС, наличие у радиоэлектронных средств параметров ЭМС, влияние окружающих объектов на электромагнитную обстановку в месте работы РЭС, наличие индустриальных помех и помех естественного происхождения. Отсутствие ЭМС означает либо некачественную работу РЭС, либо то, что данное РЭС в данной ЭМО работать не может вообще.

    1. Последствия отсутствия ЭМС и особенности изучения
      проблемы ЭМС РЭС

Проблемы, создаваемые радиопомехами, могут иметь весьма широкий диапазон – от легкого раздражения пользователя до значительных экономических потерь, а в определенных ситуациях отсутствие ЭМС может привести к человеческим жертвам. Например, определенное раздражение может вызывать восприятие звуковой информации или изображения на телевизионном экране в присутствии помех. Непреднамеренная помеха навигационной системе летательного аппарата может привести к самым печальным последствиям.

В литературе можно найти примеры, когда под действием радиопомехи любительского диапазона частот сенсорное устройство привело в действие систему пожаротушения промышленного предприятия, или излучение РЛС от судна доставки, ежедневно в определенное время проплывавшее мимо завода, воздействовало на аналоговые приборы , связанные с системой аварийного отключения завода, вызывая его остановку . В этих случаях следствием были экономические потери предприятий.

Важную роль проблема ЭМС играет в военной технике. Катастрофы самолетов военно-морских сил США и НАТО, вызванные непреднамеренными помехами во время военных учений, потери беспилотных целей, пожары в отсеках кораблей и другие подобные происшествия в мирное время, связанные с отсутствием ЭМС, служат подтверждением актуальности этой проблемы .

Особенно тяжелые последствия отсутствия ЭМС могут иметь место в военные периоды. В 1967г. во время войны США во Вьетнаме электромагнитная помеха вызвала срабатывание пускового устройства ракеты одного из самолетов, находившихся на верхней палубе американского авианосца «Форрестол». Причина – неправильно смонтированный экранированный разъем и недостаточная помехозащищенность пускового устройства. Источник помехи – излучение РЛС кругового обзора. Поскольку на верхней палубе авианосца находились другие самолеты, груженные бомбами и ракетами и заправленные горючим для боевого вылета, попадание ракеты в один из них привело к катастрофе – взрывам и пожару, который распространился на нижние палубы корабля. Погибли 134 человека, было потеряно 32 самолета, не считая других материальных потерь, связанных с повреждением авианосца .

Трагически завершилась судьба английского фрегата «Шеффилд» во время войны между Англией и Аргентиной за Фолклендские острова в начале 80-х годов прошлого века. Отсутствие ЭМС между РЛС кругового обзора и спутниковой системой связи корабля вынуждало командира корабля отключать РЛС кругового обзора во время связи с Лондоном. Атака аргентинских ВВС во время сеанса связи привела к тому, что вовремя не была обнаружена ракета типа воздух-вода, запущенная в сторону фрегата. В результате попадания ракеты в корабль имелись человеческие жертвы, а сам фрегат затонул. В тоже время атакованный одновременно с «Шеффилдом» другой английский фрегат «Плимут» избежал подобной участи. На корабле работала РЛС кругового обзора, что позволило вовремя обнаружить запущенную в его сторону ракету. С корабля было выброшено облако пассивных отражателей, на которое сработала головка самонаведения ракеты, и ракета прошла мимо цели .

Подобные примеры можно продолжить, но и приведенных достаточно, чтобы понять важность рассматриваемой проблемы.

Отметим особенности изучения проблемы ЭМС РЭС:

1. Рассматриваются только непреднамеренные помехи. Специально организованные помехи являются областью, которой занимается направление, именуемое радиоэлектронной борьбой.

2. Неограниченный уровень помех. Эта особенность проблемы приводит к тому , что приемные устройства, которые для полезного сигнала обычно рассматриваются как линейные, при действии помех могут таковыми уже не быть. И, следовательно, при анализе ЭМС РЭС, в аппаратуре должны рассматриваться возможные нелинейные эффекты.

3. Каждое РЭС рассматривается как возможный источник и рецептор помехи. Эта особенность вытекает из определения ЭМС РЭС, согласно которому каждое РЭС должно работать с требуемым качеством в условиях непреднамеренных помех и не создавать недопустимых помех другим РЭС.

4. Доступность для управления некоторых параметров источников и рецепторов помех. С целью обеспечения ЭМС РЭС на этапе разработки, например, частотно-территориальных планов систем телекоммуникации имеется возможность в некоторых пределах варьировать положение РЭС и их рабочие частоты. В некоторых случаях возможно изменение технических параметров РЭС, например мощности, излучаемой передатчиком.

ВОЕННАЯ МЫСЛЬ № 6/1990, стр. 16-20

Управление войсками

Капитан 1 ранга А. С. ТИТОВ

УСПЕШНОСТЬ ведения силами флота боевых действий по отражению агрессии противника и нанесению ему ответных ударов в значительной степени определяется эффективностью функционирования радиоэлектронных средств и систем (РЭС), без использования которых в современных условиях невозможно ни управлять силами, ни применять их оружие. Однако интенсивное оснащение кораблей и судов, самолетов и подводных лодок, систем управления и обеспечения РЭС различных типов и назначения резко усложнило проблему их радиоэлектронной защиты.

Оперативно-тактическая необходимость комплексного использования РЭС различных типов и назначения в одних и тех же районах в одно и то же время и на совпадающих или близких частотах приводит к возникновению непреднамеренных помех (НРП), когда электромагнитные излучения одних средств затрудняют или делают невозможным применение других средств (систем). Созданию НРП способствует и стремление повысить излучаемую мощность передающих и чувствительность приемных устройств РЭС в целях повышения устойчивости от воздействия средств РЭБ противника.

Важность защиты РЭС от непреднамеренных помех, масштабность этой проблемы обусловили объективную необходимость выделения ее в самостоятельную задачу - обеспечение электромагнитной совместимости (ЭМС) радиоэлектронных средств. Практика применения РЭС кораблей, соединений и объединений на учениях, а также опыт локальных войн подтвердили актуальность и трудность решения данной задачи.

Пример сложности вопросов электромагнитной совместимости РЭС - потопление английского эсминца «Шеффилд» в англо-аргентинском вооруженном конфликте. Корабль был атакован с дистанции около 30 км двумя самолетами «Супер этандер», которые выпустили две ракеты «Экзосет». Одна из них попала в его носовую часть. Ракета была обнаружена визуально за шесть секунд до попадания. Успеху удара способствовало то, что на эсминце в период атаки была выключена РЛС обнаружения воздушных целей метрового диапазона для исключения помех спутниковой системе связи «Флитсатком», через которую велись переговоры с Лондоном.

Важность вопросов обеспечения электромагнитной совместимости РЭС показывает и опыт боевой подготовки, когда непреднамеренные помехи являются одной из причин, влияющих на эффективность комплексного применения радиоэлектронных средств. Поэтому обеспечение условий эффективного функционирования РЭС кораблей и соединений в настоящее время стало неотъемлемой частью мероприятий по организации их боевого применения. Электромагнитная совместимость определяется как характеристиками самих РЭС, так и созданием соответствующих режимов их работы. Вопросы ее обеспечения должны решаться на протяжении всего жизненного цикла РЭС - на этапах проектирования, подготовки и боевого применения.

В ВМС капиталистических государств данной проблеме уделяется большое внимание. Работы по обеспечению ЭМС РЭС проводятся в рамках специальных программ (например, в США - «ТЕСЕР-80»). Они предусматривают проведение исследований, опытно-конструкторских разработок и испытаний существующих и разрабатываемых образцов радиоэлектронного вооружения и направлены на введение системного подхода к проектированию и оснащению кораблей радиоэлектронными средствами с учетом их электромагнитной совместимости; разработку системы стандартов в области ЭМС; совершенствование технических характеристик РЭС, влияющих на ЭМС (уменьшение боковых лепестков диаграмм направленности антенных устройств, уменьшение числа каналов воздействия непреднамеренных помех и т. д.); внедрение эффективных устройств защиты от НРП, принцип работы которых учитывал бы как особенности боевого применения, так и конструкцию РЭС. К числу мер, направленных на обеспечение ЭМС РЭС, относятся правильный выбор диапазонов рабочих частот, улучшение характеристик излучения, приема и повышение помехозащиты от непреднамеренных помех, а также ограничение параметров, влияющих на электромагнитную совместимость.

Значительная часть мероприятий по обеспечению ЭМС проводится на этапах подготовки и ведения боевых действий. На этапе подготовки прогнозируется ожидаемая радиоэлектронная и электромагнитная обстановка в районе боевых действий (по формулярам РЭС, опыту эксплуатации и боевой подготовки выявляются потенциально несовместимые РЭС и делается расчет уровней НРП, определяются опасные помеховые ситуации); производятся частотные назначения группам или отдельным РЭС, уточняются запрещенные частоты для работы (в основном для средств РЭП); устанавливается приоритет в использовании РЭС; назначаются сектора пространства, в которых они должны работать; вводятся временные и пространственные ограничения на работу РЭС; разрабатываются требования по обеспечению ЭМС при построении ордеров кораблей; определяются меры контроля, их периодичность и т. п.

При ведении боевых действий РЭС целесообразно применять в соответствии с заранее разработанными вариантами. В этот период может осуществляться только их корректировка из-за изменений тактической и радиоэлектронной обстановки. При действиях кораблей в составе соединения особо сложную задачу представляет обеспечение электромагнитной совместимости РЭС. Если на одном корабле виды и параметры непреднамеренных помех известны и могут учитываться во всех вариантах применения, то для соединения кораблей их определение может быть недостаточно точным из-за изменения состава и местоположения РЭС в ходе боевых действий.

Комплексный характер боевого применения РЭС соединения (объединения) обусловливает необходимость рассмотрения их как единой системы, отличающейся: иерархической структурой построения; наличием большого количества взаимосвязанных и взаимодействующих между собой элементов; разнородностью интенсивных потоков информации; многокритериальностью; взаимодействием с внешней средой.

Иерархичность структуры этой системы (рис. 1) предопределяет наличие между ее управляющими и исполнительными элементами двух типов отношений - подчинения и взаимодействия. Первые характеризуются, как правило, только информационными связями, обеспечивающими обмен командной информацией и информацией состояния. Вторые - тем, что между подсистемами (элементами) наряду с обменно-информационными устанавливаются и нежелательные связи, одним из видов которых является связь через электромагнитное поле. Она-то и предопределяет возможность возникновения электромагнитной несовместимости РЭС. Поэтому при решении конкретных задач подсистемами РЭС могут возникать конфликтные ситуации (работа в общей полосе частот, одновременная работа нескольких подсистем РЭС и т. д.).

Рис. 1. Структура системы РЭС

Так как подсистемы решают свои задачи автономно, то общая задача обеспечения ЭМС требует их согласования, т. е. координации в целях повышения общего суммарного эффекта функционирования системы. При этом информация о состоянии и параметрах отдельных РЭС, условиях их работы в системе может быть недостаточно полной или изменяться. В результате координатор сталкивается с проблемой принятия решения в условиях неопределенности. Задача каждого локального решающего элемента также рассматривается как задача принятия решений в условиях неопределенности, поскольку она имеет место в отношении действий локальных решающих элементов других подсистем. И успех координирования системы зависит от выбора оценочных диапазонов параметров.

Взаимодействие между координатором и решающими элементами нижнего уровня в теории координации строится на двух принципах.

Первый. Прогнозирование взаимодействия. Координатор прогнозирует необходимые частотные расстройки, расстояния между несовместимыми РЭС, при которых обеспечивается заданный уровень непреднамеренных помех. Если при этом оказывается, что принятый локальными решающими элементами порядок применения РЭС в подсистеме обеспечивает заданное качество работы РЭС, то задача координации выполнена.

Второй. Согласование взаимодействия. Каждый локальный решающий элемент имеет право принимать решения самостоятельно. Принцип предполагает координацию локальных функций качества, чтобы находилось решение при независимой работе подсистем. Роль координатора сводится к согласованию функции качества системы и локальных функций качества подсистемы. При координации прогнозируются условия ЭМС в системе по всем вариантам тактической обстановки и на каждом этапе решения боевой задачи. Если координацией пространственно-временных и частотных режимов работы всех этих электронных средств не удается обеспечить условия их электромагнитной совместимости, то изменяются тактическое построение кораблей и организация боевого применения их подсистем. Показателем качества координации является эффективность работы этих систем при решении боевой задачи.

Координация вопросов ЭМС РЭС соединения кораблей имеет свои особенности. Одна из них заключается в том, что они входят в качестве подсистемы в систему более высшего порядка, например объединения. Поэтому их задачи полностью определяются целями системы высшего порядка, и обеспечение совместимости осуществляется не только в интересах эффективного функционирования средств соединения, но и всей системы в целом.

Другой особенностью является то, что координация не стремится достичь оптимума, а направлена только на улучшение характеристик используемой системы. Задачи подсистем также формируются в целях получения удовлетворительного, но не обязательно оптимального решения. Практически строгий оптимум по многим причинам оказывается нереализуемым (идеальная система), так как часто отсутствует достаточная информация о факторах, влияющих на результат выбранных решений, имеются ограничения во времени да и возможности подсистем РЭС небеспредельны.

Обеспечение электромагнитной совместимости предполагает наличие априорных сведений о параметрах излучений РЭС, тактическом построении соединения, организации их применения и др. На основе этой информации с использованием моделей взаимодействия производится анализ помеховой электромагнитной обстановки, определяются наиболее опасные источники непреднамеренных помех, дается оценка их мешающего воздействия, прогнозируются количество и типы РЭС, работа которых может быть подавлена частично или полностью.

Анализ и оценку помеховой (электромагнитной) обстановки принято проводить на нескольких уровнях: парном, когда учитываются воздействия помех, создаваемых каждым из двух радиоэлектронных средств; групповом, когда в расчет берутся действия всей группы РЭС на каждый приемник; системном, когда рассматривается влияние всех РЭС, входящих в данную систему, на каждую группу.

Наиболее разработаны вопросы оценки электромагнитной обстановки в дуэльной ситуации (парная оценка). Однако решение задач обеспечения ЭМС РЭС путем ее анализа в дуэльных ситуациях не всегда оправдано и не отражает полной картины мешающих воздействий, так как в большинстве случаев между РЭС возникают более сложные связи. То же самое можно сказать и относительно групповой оценки. Поэтому при оценке ЭМС вся группа несовместимых электронных средств должна рассматриваться как единая система.

Технические и организационные меры обеспечения ЭМС РЭС достаточно полно описаны в специальной литературе. Отметим только, что нормирование их частотно-территориального разноса является необходимой, но недостаточной мерой обеспечения ЭМС, так как не исключает непреднамеренных помех, обусловленных: непрерывной сменой режимов работы и рабочих частот из-за помех противника; изменением взаимного расположения несовместимых средств вследствие изменения обстановки; случайным характером и неполнотой сведений об излучениях в широкой полосе частот.

Процесс координации содержит два важных момента - установление приоритета работы РЭС и оценку эффективности мер обеспечения их электромагнитной совместимости. Радиоэлектронные средства одной или нескольких подсистем могут работать в последовательном, параллельном и последовательно-параллельном временных режимах. В том случае, если не удается обеспечить ЭМС путем использования технических мер защиты и частотно-территориального разнесения РЭС, осуществляется временная регламентация (ранжировка их работы). Она проводится на основе оценок эффективности вклада конкретного средства в решение каждой задачи. Рассчитанная таким образом матрица приоритетов позволяет на каждом этапе функционирования системы давать временную регламентацию работы входящих в нее средств.

Оценка эффективности мер обеспечения ЭМС РЭС может производиться по показателям их успешности и полезности. В качестве п о-казателей успешности могут выступать как вероятностные показатели (вероятность обнаружения, вероятность сопровождения и т. д.), так и показатели изменения тактических параметров отдельных средств и всей системы (сокращение дальности обнаружения, снижение пропускной способности и т. д.). Показатели полезности характеризуют вклад РЭС корабля (соединения) в эффективность функционирования системы более высокого уровня (соединения, объединения) при решении боевых задач. В конечном итоге координация вопросов обеспечения ЭМС сводится к распределению частотного и пространственно-временного ресурса системы РЭС таким образом, чтобы обеспечивалось решение боевых задач с заданной эффективностью.

Наиболее сложной проблемой является организация взаимодействия сил флота с родами войск других видов Вооруженных Сил по вопросам ведения радиоэлектронной борьбы. Особую значимость приобретает решение этой проблемы в целях предотвращения (срыва) возможной агрессии или отражения внезапного нападения противника. Внезапность боевых действий не оставляет времени на подготовку и отработку всех вопросов взаимодействия, в том числе и по боевому применению радиоэлектронных средств и систем. Отсюда - требования к уровню боевой готовности дежурных сил и средств, необходимости заблаговременного, четкого согласования их работы по месту, времени, диапазонам частот, секторам ответственности, количеству выделенных сил и средств.

Принципиально вопросы обеспечения ЭМС РЭС, подлежащие согласованию, не меняются: распределение частотно-временного и пространственного ресурсов работы РЭС и осуществление соответствующего контроля. Видимо, их целесообразно включать в раздел радиоэлектронной защиты в приложении к планам по боевому взаимодействию. В разрабатываемом документе должны быть отражены в виде таблиц и графиков: распределение частот (основные, запасные, запрещенные); временной график работы РЭС; сектора работы РЭС; зависимости уровня непреднамеренных помех от расстояния отдельно для береговых и корабельных РЭС. Все эти вопросы нужно разработать заранее и дать оценку их эффективности. При изменении состава сил должна немедленно производиться соответствующая корректировка.

Важно отметить, что ЭМС не является единственным фактором, влияющим на эффективность РЭС. Поэтому при организации их применения необходимо учитывать влияние мер обеспечения ЭМС на другие составляющие радиоэлектронной защиты (защиту РЭС от помех, создаваемых противником и т. п.).

Проблемы обеспечения электромагнитной совместимости радиоэлектронных средств при их комплексном использовании нельзя решить, задав жесткий алгоритм действий на все случаи. Каждый раз следует учитывать множество различных факторов, оперативно реагировать на все изменения обстановки (оперативно-тактической, радиоэлектронной, электромагнитной), характера использования сил и радиоэлектронных средств, производить оценку эффективности решения поставленной задачи при выбранных вариантах их работы.

Представляется целесообразным в ходе планирования боевого применения объединений решение задачи обеспечения ЭМС РЭС предусматривать в рамках специальной операции по срыву функционирования системы управления противника и обеспечению надежного управления своими силами.

Для комментирования необходимо зарегистрироваться на сайте

Поделиться